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Summary

This paper deals with the optimal control of grid-connected Battery Energy Storage
Systems (BESSs) operating for energy arbitrage. An important issue is that BESSs
degrade over time, according to their use, and thus they are usable only for a lim-
ited number of cycles. Therefore, the time horizon of the optimization depends on
the actual operation of the BESS. We focus on Li-ion batteries and use an empiri-
cal model to describe battery degradation. The BESS model includes an equivalent
circuit for the battery and a simplified model for the power converter. For the price,
we use a linear stochastic model, including the effect of the time-of-the-day. The
problem of maximizing the revenues obtained over the BESS lifetime is formulated
as a stochastic optimal control problem with a long, operation-dependent time hori-
zon. First, we divide this problem into a finite set of sub-problems, such that for
each one of them, the State of Health (SoH) of the battery is approximately constant.
Next, we reformulate approximately every sub-problem into the minimization of the
ratio of two long-time average-cost criteria and use a value-iteration-type algorithm
to derive the optimal policy. Finally, we present some numerical results. It turns out
that the optimal policy is more aggressive for a more aged battery. We also investi-
gate the effects of the energy loss parameters, degradation parameters, and price on
the optimal policy.

KEYWORDS:
Battery Energy Storage Systems (BESSs), Battery degradation, Stochastic optimal control, Ratio cost
problems, Dynamic Programming

1 INTRODUCTION

Battery Energy Storage Systems (BESSs) gain ground in the power system, as means to mitigate the uncertainties caused by the
increased penetration of renewable sources. BESS could have various roles in the power grid, including load shifting, energy
arbitrage (buy energy when the price is low and sell it back when the price is high), frequency regulation, and improving power
quality in microgrids. Among the various battery technologies, Li-ion batteries are becoming increasingly competitive for static
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solutions. Despite the sharp decline in battery prices during recent years1,2, investment costs remain still high. Furthermore,
batteries degrade (age) over time, according to their use, and degradation eventually leads to the end of their useful life (EoL).
Thus, it is important to optimize the operation of BESSs over their lifetime, which is, however, operation–dependent.
Battery degradation is a complex nonlinear phenomenon caused by irreversible chemical and mechanical variations of the

battery materials. In the current work, we focus on Li-ion batteries. For a review of the degradation mechanisms of Li-ion
batteries, see Vetter et al. (2005)3. There are two kinds of models for battery aging: empirical and physics-basedmodels. Physics-
based models4,5,6 are able to make the most accurate predictions but involve coupled PDEs. Thus, it is difficult to use them to
optimize battery operation. Most of the papers studying the optimal operation of BESSs use simple empirical models. In this
article, we use a detailed empirical model7, capturing many aspects of battery degradation. An alternative model can be found
in Suri et al. (2016)8.
Usually, battery degradation is included in the optimization of BESS operation using a simplifying assumption. Several

articles9,10,11,12,13,14 assume that there is a certain cost for the use of the battery, proportional to the initial investment cost.
Another approach is to put certain constraints on battery usage15,16,17. Other authors use separation of time scales ideas18,19,20.
However, most of the approaches do not consider the impact of BESS usage on the time horizon of the problem. Notable
exceptions are the works of Tan et al.21,22, where the problem is formulated as a Stochastic Shortest Path (SSP) problem. In order
to do so, however, the state space should be extended to include the total degradation up to the current time step. This extension
leads to huge state space cardinalities and makes the analysis and optimization of detailed models computationally challenging.
In this paper, we optimize the long-term profits of a BESS, operating for energy arbitrage. We build on our previous work23,

which considered an ampere-hour counting (empirical) model for battery degradation and a simplified electrical model for the
battery. In that paper, we reformulated a problem with a long, operation-dependent time horizon into the problem of minimizing
the ratio of two long-time average-cost criteria. In this article, we use more accurate (nonlinear and non-convex) electrical and
battery degradation models. For these models, the method developed in our previous work23 is not directly applicable. The
problem is that the degradation rate depends on the battery’s State of Health (SoH). To overcome this difficulty, we divide the
SoH state into small parts and apply the methods developed in that paper into each of these intervals.
This reformulation leads to Bellman-type equations for each subdivision of the SoH. To solve these equations, we develop

a value-iteration-type algorithm for ratio objective problems with a periodic Markov chain. Numerical results indicate that, as
the BESS becomes older, the optimal policy becomes more aggressive. We then analyze the effects of the price dynamics, the
electrical and the aging parameters on the optimal control law.
In summary, the contribution of this work is fourfold:

(a) We develop a detailed (nonlinear non-convex) model to describe the optimal operation of a BESS over its lifetime.

(b) We reformulate this problem in terms of a set of ratio cost problems that are much easier to solve.

(c) We propose an efficient value-iteration-type algorithm to solve these problems.

(d) We provide some numerical results for the BESS optimal control problem and investigate the effect of the different
parameters on the optimal control law.

The rest of this paper is organized as follows. In Section 2, we describe an electrical model for the BESS and amodel for battery
degradation. Furthermore, a stochastic model of the price dynamics is presented. Section 3 presents a stochastic optimal control
problem formulation, describing the revenue maximization of a BESS operating for energy arbitrage. Section 4 reformulates the
original problem into a set of ratio-cost problems and describes an algorithm for solving them. Section 5 presents the numerical
results, and in Section 6, we review the basic contributions of the current work.

2 MATHEMATICAL MODEL

2.1 Electrical Model
This section describes a model of a grid-connected BESS (Figure 1). The battery pack is connected to the grid through a
bidirectional inverter. Tomodel the battery pack, we use the Equivalent CircuitModel (ECM) of Figure 2 (see e.g. Plett (2015)24),
which consists of an ideal voltage source, a nonlinear hysteresis element and a resistor R.
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FIGURE 1 A schematic representation of the BESS. The battery pack is connected to the grid through a bidirectional DC-AC
power converter.
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FIGURE 2 Equivalent circuit model. It consists of an ideal voltage source a hysteresis element and a resistor.

The voltage V at the terminals of the battery pack is given by:

V = VOC + Ri + sgn(i)Vℎ,

where VOC is the open circuit voltage, Vℎ is the hysteresis voltage, i is the current from the inverter to the battery pack, and sgn(i)
is given by:

sgn(i) =
⎧

⎪

⎨

⎪

⎩

1 if i > 0
0 if i = 0
−1 if i < 0

.

Let us note that the value of the open circuit voltage VOC may depend on the State of Charge.
The State of Charge SoC ∈ [0, 1], of the battery evolves according to:

d
dt

SoC = 1
C
i, (1)

where C is the capacity of the battery.
The power Pib, flowing from the inverter to the battery, is given by:

Pib = V i = VOCi + Ri2 + |i|Vℎ.

The power losses of the inverter can be expressed as a function of Pib as PInvLoss(Pib). Thus the power flowing from the grid
to the BESS is given by:

Pgi = fPgi(i) = Pib + PInvLoss(Pib). (2)

Remark 1. More detailed models for the battery or the power converter could be used. For example, the ECM could contain an
RC element (modeling diffusion voltage). We chose the presented models for the battery and the converter because they provide
a reasonable approximation of the energy conversion. Let us note that most of the literature presents more simplified models.
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2.2 Battery Degradation Model
Batteries degrade over time due to several different mechanisms. Some of them are related to cycling (cycling aging) and others
to time pass (calendar aging)25. There is a variety of battery degradation models in the literature. Furthermore, degradation
depends on the particular battery chemistry26. The methods presented in this paper are applicable to any macroscopic model
which depends on the battery current, voltage and SoC. In this section, we describe a simplified version of the battery agingmodel
presented in Petit et al. (2016)7, which is an rather detailed empirical model, capturing many aspects of battery degradation.
The degradation Q of the battery is expressed in terms of the capacity loss as:

Q(t) =
C(0) − C(t)

C(0)
,

where C(t) is the capacity of the battery at time t. The degradation Q evolves over time according to the differential equation:

Q̇ = f cal(Q,SoC) + f cyc(Q, I) (3)

and where I is the C-rate i.e., I = i∕C and f cal(Q,SoC) and f cyc(Q, I) are given by:

f cal(Q,SoC) = (c1 + c2SoC)Q−c3 , (4)
f cyc(Q, I) = |I|c4Q

−c5ec6|I|, (5)

for appropriate positive constants c1,… , c6.
This model captures the following characteristics of battery aging:

(i) Batteries degrade faster in the initial period of their life.

(ii) Aging depends both on the time pass and the battery use.

(iii) The use of large currents makes the batteries degrade faster.

(iv) Storing batteries with high SoC accelerates aging.

The EoL of the battery is described by a maximum degradation QM . A reasonable value for QM could be 0.2 or 0.325.

Remark 2. An interesting extension would be to include battery temperature, using a thermal model, or consider the increase in
the internal resistance.

2.3 Model Discretization
The BESS participates in an energy market, which operates in discrete time intervals Δt (e.g. 1 hour or 15 minutes). We thus
discretize the model, and assume that the power from or to the BESS is constant during each interval Δt. The discrete time
version of (1) is given by:

SoCk+1 = SoCk + uk, (6)
where the control variable uk is given by uk =

iΔt
Ck
. For the control action uk there is a constraint:

uk ∈ [−uM , uM ] ∩ [−SoCk, 1 − SoCk] (7)

representing that there is a maximum and minimum charging rate and that the SoC cannot drop below 0 or rise above 1.
Battery aging is a much slower phenomenon compared to charging/discharging. Thus, we can discretize the degradation

dynamics with a very small error as:

Qk+1 = Qk + Δt
(

f cal(Qk,SoCk) + f cyc(Qk, uk∕Δt)
)

= Qk + g2(Qk,SoCk, uk), (8)

where we used that I = uk∕Δt. The function g2(Qk,SoCk, uk) expresses the degradation rate of the BESS and it is computed
using (4), (5).
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2.4 Energy Arbitrage and Price Model
The revenue of the BESS depends on the energy price. We assume that the effects of the BESS in the power grid are small and
thus we treat the price as an external signal. Since future prices are uncertain, the price will be modeled as a random process.
Denoting by pk the price during time interval k, the cost for the energy exchange during that interval is:

g1(Qk, pk, uk) = pkfPgi(Ckuk∕Δt)Δt, (9)

where fPgi is the power flowing from the grid to the BESS given in (2).
We assume that the price pk depends on the time-of-the-day tk as follows:

pk = p̄(tk) + p̃k, (10)

where p̄(tk) is the mean price at time tk, and p̃k is the detrended (deseasonalized) price. We model the evolution of the
deseasonalized price p̃k as a first order time invariant linear dynamics with a random disturbance wk:

p̃k+1 = �p̃k +wk, (11)

where 0 < � < 1.
The time-of-the-day evolves according to:

tk+1 = (tk + Δt)(mod 24ℎ). (12)

3 PROBLEM FORMULATION

In this section, we first discretize the state space of the model and introduce some notation necessary for the rest of the paper.
Then, we formulate a stochastic optimal control problem describing the maximization of the revenue obtained over the BESS
lifetime.

3.1 State Space Discretization
The state space consists of the fast varying state variables SoCk, p̃k, tk and the slowly varying degradation variableQk. We now
discretize the fast varying variables of the state space. We denote by x1, x2, x3 and u the discrete values of the state variables
SoCk, p̃k, tk and the control input, taking values in X1, X2, X3, and U respectively.
Denote the vector of fast varying state variables [x1k, x

2
k, x

3
k] by xk. Denote also by X = X1 × X2 × X3 the state space of x

and by F (x) the feasible subset of the discrete action space, i.e., the values of u satisfying (7). Assume that the time-of-the-day
state space X3, consists of �3 + 1 points, indexed as 0, 1,… , �3 and that X consists of � points.
In compact form the dynamics is written as:

xk+1 = f (xk, uk, wk). (13)

It is convenient to use the controlled Markov chain notation P (xk+1 = j|xk = i, uk = u) = pij(u) to describe the stochastic
dynamics (13).

3.2 Optimal Control Problem
We then describe the optimal control problem as the minimization of the cumulative cost of the BESS over its lifetime (or
equivalently as the maximization of the revenues over the lifetime). The lifetime is a random variable (stopping time) given by:

T = min{k ∶ Qk ≥ QM}. (14)

Then the problem of optimal operation is given by:

minimize Ja = E

[ T
∑

k=0
g1(xk, Qk, uk)

]

, (15)

where the minimization is considered on the set of memory-less feasible policies of the form uk = �(xk, Qk).
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This is a Stochastic Shortest Path (SSP) problem27. Namely, it is a stochastic optimal control problem, for which we consider
as absorbing states the tuples (xk, Qk) satisfying Qk ≥ QM . The time horizon T depends both on the control law and the
realization of the random variables wk.
There are some Dynamic Programming algorithms for this kind of problems in the literature. However, the inclusion of the

degradation variable Qk into the state space makes its cardinality very large, and thus the corresponding computations very
demanding. In the following section, we present a reformulation of this problem which leads to more efficient computations.

4 PROBLEM REFORMULATION AND SOLUTION ALGORITHM

In this section we present an approximate reformulation of the problem which leads to a set of optimization problems involving
the ratio of two long-time average-cost problems. Then, we present a solution algorithm, for each of these problems, which takes
into account the periodic structure of the model.

4.1 Problem Reformulation
Problem (15) is not easy to solve, due to its long and operation-dependent time horizon. We then provide a series of approximate
reformulations of (15), leading eventually to a set of ratio cost problems that are easier to solve. The first step is to divide the time
horizon into a number of pieces according to the battery degradation state. Particularly, the cost function can be expressed as:

Ja = J 1a +⋯ + JNa ,

where:

J na = E

[ Tn
∑

k=Tn−1+1
g1(xk, Qk, uk)

]

, (16)

T0 = −1 and Tn is a stopping time describing the first instant of time where Qk ≥ nQM∕N . That is:

Tn = min{k ∶ Qk ≥ nQM∕N}.

In other words, the time horizon is sliced inN pieces, according to the state of degradation Q. Note that the times of slicing Tn
are not pre-specified and depend on the control law and the randomness realization.
We approximate the optimal control law for Ja with the control law which is optimal for each J na .

Remark 3. Theminimization of J na in (16) ignores the effects that the final condition (x
1
Tn
, x2Tn , QTn) has on J

n+1
a . Thus, the quality

of this approximation depends on the degree of dependence of J n+1a on its initial conditions (x1Tn+1, x
2
Tn+1

, QTn+1). Since the time
horizon of each of the problems J 1a ,… , JNa is long, we expect that the dependence on the initial conditions will be small.

Observe that the degradation dynamics is much slower than the everyday operation. IfN is large enough, the value of Qk is
almost constant in each of the intervals [Tn−1, Tn]. We take this value to be Q̄n = (n−1∕2)QM∕N . Thus, in the n-th interval the
optimal control problem is approximately reformulated as:

minimize
uk=�k(xk)

J nb = E
⎡

⎢

⎢

⎣

T̄n
∑

k=0
g1(x2k, Q̄n, uk)

⎤

⎥

⎥

⎦

. (17)

where T̄n = min{� ∶
∑�
k=0 g2(xk, uk, Q̄n) ≥ QM∕N}.

Note that in the optimal control problem (17), the state is (x1k, x
2
k, x

3
k) ∈ X and the degradation variable is not a part of the

state.

Remark 4. There is a trade-off in the choice ofN . We needN to be large enough so thatQk does not vary much in each interval.
On the other hand, the value of N should not be too high, for the problems J 1a ,… , JNa to have a long horizon (see Remark 3).
Furthermore, a large value ofN would result in a large number of computations. In the numerical examples, we will useN = 30.

We then provide the final approximate reformulation of our problem. The cost function J nb in (17) will be approximated by a
ratio cost J cn , given by:

J nc =
QM

N

J nc,num
J nc,den

, (18)
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where the cost functions in the numerator and the denominator are long-time average-cost criteria:

J nc,num = lim
Td→∞

E

[

1
Td

Td
∑

k=0
gn1(xk, uk)

]

, (19)

J nc,den = lim
Td→∞

E

[

1
Td

Td
∑

k=0
gn2(xk, uk)

]

, (20)

where gn1(xk, uk) = g1(xk, Q̄n, uk), gn2(xk, uk) = g2(Q̄n, x1k, uk), g2 is given in (8), and Td is deterministic. For a policy �, the
value of J nc,num represents the cost rate (minus the revenue rate) and the value of J nc,den represents the degradation rate.

Remark 5. The intuition behind the last approximation is the following. The total cost J nb is approximated by the average cost
per stage J nc,num times the number of states Tn. On the other hand, the number of stages is inversely proportional to the average
degradation per stage J nc,den.

The following proposition shows that if a policy � minimizes (18), then it is also minimizing (17) approximately. It provides
also a characterization of the optimal policy of (17), in terms of Bellman-type equations. This characterization will be used to
derive a solution algorithm.

Proposition 1 (Results from Koronis et al.23). It holds:

(a) Consider the optimal control problem:
minimize
uk=�(xk)

J nc , (21)

and denote by �⋆,n(⋅) the optimal control law. Then, provided that the aging is slow, i.e., that the constants c1, c2, and c4
are small enough, the policy �⋆,n(⋅) is "-optimal for (17).

(b) Assume that there exist constants �⋆,n1 , �⋆,n2 , vectors ℎ⋆,n1 , ℎ⋆,n2 ∈ ℝ� , and a policy �⋆,n such that:

�⋆,n1 + ℎ⋆,n1 (i) = gn1(i, �
⋆,n(i)) +

�
∑

j=1
ℎ⋆,n1 (j)pij(�⋆,n(i)) (22)

�⋆,n2 + ℎ⋆,n2 (i) = gn2(i, �
⋆,n(i)) +

�
∑

j=1
ℎ⋆,n2 (j)pij(�⋆,n(i)) (23)

�⋆,n(i) = argmin
u∈F (i)

[

�⋆,n2 gn1(i, u) − �
⋆,n
1 gn2(u) +

�
∑

j=1
pij(u)(�

⋆,n
2 ℎ⋆,n1 (j) − �⋆,n1 ℎ⋆,n2 (j))

]

. (24)

for all i ∈ X. Then, �⋆,n = �⋆,n1 ∕�⋆,n2 is the optimal value of (18) and the minimizer u = �⋆,n(i) of (24) is the optimal
control law. Furthermore, the controller u = �⋆,n(i) is optimal for the long-time average-cost criterion:

lim
Td→∞

1
Td
E

[ Td
∑

k=0
rn(xk, uk)

]

(25)

where rn(xk, uk) = �
⋆,n
2 gn1(i, u) − �

⋆,n
1 gn2(u) and the value of this cost is 0. □

Equations (22) and (23) are the Bellman equations for the long-time average-cost criteria J nc,num and J nc,den, under the policy
�⋆,n. Equation (24) represents that �⋆,n minimizes (25).
It turns out that problem (21) is easier to solve numerically. Having characterized the optimal solution for (21), in the following

subsection we propose an efficient algorithm based on value iteration.

4.2 Solution Algorithm
We then develop a value-iteration-type algorithm on each one of the problems in the form (21). This algorithm is a modification
the one presented in our previous work23 using the fact that the controlled Markov chain (13) is periodic.
Let us partition the state space X into sets Xt=0,… , Xt=�3 such that if i = (x1, x2, x3) ∈ Xt=l then x3 = l. Observe that

the Markov chain visits the sets Xt=0,… , Xt=�3 cyclically. That is, if i ∈ Xt=l then, if there is a u such that pij(u) > 0 then
j ∈ Xt=l+1 (here we use the convention �3 + 1 ≡ 0). Note that each of the sets Xt=l has �∕(�3 + 1) elements.
The algorithm is the following:
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(i) Start with an initial guess for �⋆,n1 , �⋆,n2 denoted by �0,n1 , �
0,n
2 and values ℎ0,n1 (i), ℎ

0,n
2 (i), for i ∈ X

t=0. Set k← 0.

(ii) For l = �3 down to l = 1, for all i ∈ Xt=l, s = 1, 2 compute:

�k,n(i) = argmin
u∈F (i)

[

�k,n2 gn1(i, u) − �
k,n
1 gn2(u) +

∑

j∈Xt=l+1

pij(u)(�
k,n
2 ℎk,n1 (j) − �

k,n
1 ℎk,n2 (j))

]

, (26)

ℎk,ns (i) = g
n
s (i, �

k,n(i)) +
∑

j∈Xt=l+1

ℎk,ns (j)pij(�
k,n(i)) − �k,ns , (27)

where we use again the convention �3 + 1 ≡ 0.

(iii) For i ∈ Xt=0, s = 1, 2, compute:

�k+1,n(i) = argmin
u∈F (i)

[

�k,n2 gn1(i, u) − �
k,n
1 gn2(u) +

∑

j∈Xt=1

pij(u)(�
k,n
2 ℎk,n1 (j) − �

k,n
1 ℎk,n2 (j))

]

, (28)

ℎ̃k+1,ns (i) = gns (i, �
k+1,n(i)) +

∑

j∈Xt=1

ℎk,ns (j)pij(�
k+1,n(i)) − �k,ns . (29)

(iv) For s = 1, 2, compute:

�s =
∑

i∈Xt=0

ℎk+1,ns (i)
�∕(�3 + 1)

,

and update �k,ns , s = 1, 2 as:

�k+1,ns = �k,ns +
�s

�3 + 1
(30)

(v) For s = 1, 2 and i ∈ Xt=0, compute:

ℎk+1,ns (i) = ℎ̃k+1,ns (i) − �s (31)

(vi) Set k← k + 1 and go to Step (ii).

Proposition 2. Assume that �⋆,n1 , �⋆,n2 , ℎ⋆,n1 , ℎ⋆,n2 is a fixed point of the algorithm. Then, it is an optimal solution for problem
(18).

Proof: To be a fixed point we should have �s = 0, for s = 1, 2. Thus, ℎ̃⋆,ns = ℎ⋆,ns and (22)-(24) are satisfied. □

Remark 6. Value iteration schemes for periodic Markov decision processes were first proposed in Su (1972)28. Similar ideas
were used for water reservoir operation scheduling in Wang et al. (1986)29. In a different formation a similar idea was applied in
Hu et al. (2014)30, for energy arbitrage. The basic difference of the proposed algorithm is that it applies to ratio-cost problems.

5 NUMERICAL RESULTS

In this section, we give some numerical results showing the applicability of the proposed methods on a quite detailed BESS
model. Furthermore, we present the optimal control law for several values of the parameters indicating some non-obvious
dependences.

5.1 BESS Parameters
In this section we present some numerical results for the 192kWh system presented in Schimpe et al. (2018)31. The maximum
charging and discharging rate is 1C, i.e., the battery charges or discharges fully in 1h. We assume that the BESS participates in
the 15min intraday market. Thus, we choose the discretization interval Δt to be 15 min, and the maximum value for the control
input um is 0.25.
The BESS consists of 19968 3.2V ∕3Aℎ cells organized in blocks, modules and racks, with total nominal open circuit voltage

of VOC = 665.6V . In total we have 208 battery cells in series and 96 in parallel (for more details see Schimpe et al. (2018)31).
For simplicity, we assume that the open circuit voltage does not depend on the SoC, and it is always equal to its nominal value.
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FIGURE 3 The mean price as a function of the time-of-the-day. The diagram also presents the realized prices for the time
interval under consideration. The mean price has two local minima at 3–4AM and 2–3PM and two local maxima at 8–9AM and
7–8PM.

The hysteresis voltage for a single cell is 22mV and for the battery pack is Vℎ = 4.576V . The internal resistance for a single cell
is approximately 50mΩ and thus for the BESS is R = 108.3mΩ. Since, we assume that the current rating is 1C the maximum
current is 3A × 96 = 288A and the power rating is Pmax = 192kW .
Using Figure 9 of Schimpe et al. (2018)31, the power losses of the inverter are given by:

PInvLoss(Pib) =

{

0.008Pmax + 0.017Pib, if Pib ≠ 0
0, if Pib = 0

. (32)

In discrete time the model for the degradation g2 becomes:

g2(xk, Qk, uk) = (cd1 + c
d
2x

1
k)Q

−cd3 + |uk|c
d
4Q

−cd5 ec
d
6 |uk|, (33)

where the (discrete) parameters are given by:

cd1 = 4.5 ⋅ 10
−7, c2 = 6.6 ⋅ 10−7, cd3 = 0.12,

cd4 = 5.9 ⋅ 10
−6, cd5 = 0.818, c

d
6 = 1.62.

We consider that the battery reaches the End of Life (EoL) when Q = 0.3.

Remark 7. The parameters for calendar aging are such that the battery will last for 15 years if it is empty and 6 years if it is
full. The parameters for the cycling aging correspond to 3000 full cycles with 1C rate, before the battery reaches the EoL.
Furthermore, cd6 is such that the battery degrades 1.5 times more for the same Ah, if the current is 1C , compared to cycling with
small current. These choices are consistent with the data presented in the literature32,33,34. The values of the exponents cd3 and
cd5 are taken from Petit et al. (2016)7.

5.2 Price Model Parameters
To calibrate the price model we use the publicly available data from the day-ahead DE-LU bidding zone from the first 9 months
of 20201. We assume that the BESS operates in the continuous market35 with interval 15min, and that the day-ahead price data
is a good approximation of the continuous market. For this data set, the mean hourly prices p̄(t) are shown in Figure 3. The mean
price for each time-of-the-day is computed as the average over the sampling period.
Having removed the seasonal trend p̄(t), to determine the parameters for the price model, we need to find the value of � of the

autoregressive model and the innovation distribution wk. Discretizing this model we obtain the transition probability matrix.
The details of the derivation of the 15min continuous market model are presented in the Appendix.

1This time period includes the first wave of COVID-19. We choose this period, because it has been argued that it offers a glimpse into the future power systems, where
a high share of the consumed energy comes from renewable sources, e.g., https://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/07/COVID-19-GLIMPSES-OF-
THE-ENERGY-FUTURE.pdf
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FIGURE 4 The evolution of battery degradation over time. The data points are equally distanced vertically. That is, they
correspond to degradation values 0, 0.01, 0.02,… , 0.3. The curve in this figure is piecewise linear. The n-th line segment has
slope �⋆,n2 .
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FIGURE 5 The evolution of the cumulative revenue over time.The curve in this figure is piecewise linear. The n-th line segment
has slope −�⋆,n1 . The total revenue in the n-th interval is proportional to −�⋆,n1 ∕�⋆,n2 .

5.3 Numerical Solution
We then use the algorithm of Section 4.2 to solve the optimal control problem with the parameters described in the previous
subsections. Let us give some details of the discrete state space. The SoC state spaceX1 has 101 points, the price deviation state
space X2 has 51 points and the time-of-the-day state space X3 has 4 ⋅ 24 = 96 points. Thus, the state space of the fast variables
X has � = 494496 points. We useN = 30 intervals for the discretization of Q.
Figures 4 and 5 illustrate the evolution of the battery degradation over time and the cumulative revenues over time, under the

optimal control law. We observe that initially the battery degrades faster and that revenue rate increases as the battery gets older.
Since the capacity of the battery becomes smaller as the degradationQ increases, we observe that it is optimal to use the battery
more aggressively as Q increases.
Figure 6 shows the optimal trajectory of the SoC for a simulated trajectory of the price and three different values of Q. We

observe that as the BESS becomes older, the optimal policy becomes more aggressive. We may observe in that in the last part
of Figure 6 the BESS performs two full cycles almost every day.

Remark 8. Let us explain this finding. There are two competing phenomena. Buying energy below a price p1 and selling it back
at a price p2 > p1 is beneficial (ignoring temporarily the losses), but it increases the cycling aging of the battery. Thus, if there
was no calendar aging, the BESS would expect a very high price spread p2−p1 to spend the remaining cycles, and would choose
to remain idle for the most of the time. On the other hand asQ increases, calendar aging becomes more important, compared to
the cycling aging. Thus, the battery degrades anyway, and this creates a pressure to act more frequently, even for smaller price
margin p2 − p1.
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FIGURE 6 The evolution of the SoC, for the same price signal, for three different values ofQ. The price signal is a sample path
of the stochastic model.

Remark 9. The optimal control action does not depend only on the price. From Figure 6, we observe that, indeed, in most cases,
the BESS charges when the price is low and discharges when the price is high. However, comparing the gray regions A and B
in the middle part of Figure 6, we observe that the BESS charges in region A at a higher price than the price in region B, where
the BESS discharges. We may attribute this behavior to the time-of-the-day. Particularly, charging in region A starts at 2 pm,
expecting that the price will increase. In contrast, in region B, the discharge begins slightly before 8 am, expecting that the price
will decrease.
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(c)

(b)

FIGURE 7 The effects of price dynamics, and battery battery loss parameters on the optimal control law.

5.4 The effects of the Model’s Parameters on the Optimal Policy
In this subsection, we investigate the effect of the several model parameters on the optimal policy. To simplify presentation,
we assume that there is no time-of-the-day effect i.e., the mean price p̄(tk) is a constant p̄. At first we study the effects of the
electrical parameters Vℎ and R, and the price dynamics and then move to the effect of the degradation parameters.

5.4.1 The effect of Loss and Price Parameters
We start with the simplest possible model i.e., we assume that R = Vℎ = cd2 = ⋯ = cdk = 0 and that cd1 = 1. In this case, aging
is independent of the operational choices of the system. We further assume that p̄ = 50, that is the price is always positive and
varies between 0 and 100. The optimal control law is shown in Figure 7.a. There are several regions. Whenever the price is above
50, the BESS sells the stored energy with the maximum possible power, constrained by the limits of the battery. Whenever the
price is below 50, it absorbs energy with the maximum possible power constrained by the limits of the battery. Finally, when
the price is exactly at 50, the BESS moves towards SoC 50% to improve the flexibility of future choices.
We then assume that the hysteresis voltage is positive Vℎ = 4.576V and the inverter losses are given by (32). The optimal

control law is shown in Figure 7.b. The difference here is that there is a region of intermediate price, where the optimal operation
for the BESS is to remain idle, i.e., not to absorb or release energy.
We then consider the effect of the internal resistance R = 0.1083Ω. Additionally, the price varies between −25 and 75, i.e.,

we assume that price can take negative values, as well. Figure 7.c shows the optimal control law. Observe that when the price is
low and the state of charge is high, the BESS discharges. The reason for this is that since the price is negative, and the expected
price for the near future is negative as well, the BESS can cycle loosing some energy. But loosing some energy represents a
profit, when the price remains negative. The existence of the internal resistance makes the optimal control law to vary smoothly
with respect to the price (excluding of course the negative cycling region). This phenomenon has been also observed in Haessig
(2020)36.
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FIGURE 8 Parts (a) and (b) present the effect of the degradation Q on the optimal control law. The value of Q is 0.01, and
0.3, respectively. Parts (c) and (d) illustrate the effect of the cd2 and cd6 parameters. Part (c) shows the optimal control law for
c6 = 6.48 i.e., four times larger than the value of Subsection 5.1. Part (d) shows the optimal control law when cd2 = 66 i.e., 10
times more than before.

5.4.2 The Effect of Degradation Parameters
We then investigate the effects of the degradation parameters on the optimal control law. Let us note that the degradation behavior
of the batteries varies widely as a function of battery chemistry (e.g. Preger et al. (2020)26). Thus, this investigation is useful
when choosing battery technology.
The degradation rate g2 can be written as:

g2(xk, Qk, uk) = Q−cd5
[

(C1 + C2x1k) + |uk|e
cd6 |uk|

]

,

where C1 = cd1Q
cd5−c

d
3 and C2 = cd2Q

cd5−c
d
3 . Furthermore, the scale of the degradation rate g2 does not affect the optimal control

law. Therefore, the optimal control law depends on three parameters C1, C2 and cd6 . As the battery becomes older, C1 and C2
increase (recall that cd5 > cd3 ). The effects of the degradation Q on the optimal control law are illustrated in Figure 8 parts
(a) and (b). As Q increases the calendar aging becomes more important. Furthermore, the optimal control law becomes more
aggressive, the idle zone shrinks, and, at Q = 0.3, a negative cycling zone appears.
Figure 8.c shows the optimal control law for cd6 = 6.48, i.e., four times larger than the value of Subsection 5.1. Recall that

parameter cd6 represents the extend to which the battery degrades faster when cycled with large currents. The effect of a higher
cd6 parameter is that the optimal control law varies less, and reaches its maximum power only when both the price and the SoC
are low. Furthermore, the maximum power in this case is 0.16 (instead of 0.25). Figure 8.d shows the optimal control law when
cd2 = 66 i.e., 10 timesmore than before, and the rest of the parameters are as in Subsection 5.1. Recall that parameter cd2 represents
the extend to which the battery degrades faster when remains idle with high SoC. We observe two qualitative differences here.
First, the biggest price for which it is optimal to use uk ≥ 0 is goes from 15 to 7, that is, to charge the BESS, the price have
to be lower. Thus, the average battery SoC is lower. Second, a negative cycling region appears. Negative price cycling is more
attractive, when cd2 is high, because it causes x1k to temporarily decrease.



14 I. Kordonis, A.C. Charalampidis, P.Haessig

FIGURE A1 The histogram of the residues.

6 CONCLUSION

This paper dealt with the problem of maximizing the revenues obtained from a BESS over its lifetime, taking into account
the effects of the control law on battery lifetime. The problem was transformed into a sequence of simpler ones, involving the
minimization of the ratio of two long-time average-cost problems. We then derived a value-iteration-type algorithm for periodic
problems with ratio costs. Numerical results indicate that as the battery becomes older, the optimal control law becomes more
aggressive. We also investigated the effects of the electrical parameters (hysteresis, internal resistance, and the inverter losses)
and the price dynamics parameters (mean price and variance) on the optimal control law.
In the future, we may consider more accurate models, including the increase of the internal resistance, nonlinear price models,

and include fixed costs or discounting.

APPENDIX

A PRICE MODEL

There are many ways to generate a model for the 15 min market price. In this section, we present a model that is statistically
consistent with the 1h data. However, the methods described in the main text may be applied to any such model.
Let us denote by p̃1ℎ(k) the deseasonalized price at hour k. We assume a first order linear model for the hourly price:

p̃1ℎ(k + 1) = �1ℎp̃1ℎ +w1ℎ
k ,

where w1ℎ
k are zero mean i.i.d. random variables. Using least squares, we estimate �1ℎ = 0.9652. The histogram of the residues

w1ℎ
k = p̃1ℎ(k+ 1) − �1ℎp̃1ℎ(k) is shown in Figure A1. We model the distribution of the hourly residues as a Laplace distribution

with density:

fL,b(z) =
1
2b
exp

(

−
|z|
b

)

.

The maximum likelihood estimator for b is the mean absolute value of w1ℎ
k ’s. For this data set b = 2.4681. The cumulative

empirical distribution of the residues is compared with the cumulative of the Laplace distribution in Figure A2. For comparison,
the maximum likelihood estimate of the Normal distribution is also plotted. It turns out that the Laplace distribution follows
much more closely the empirical distribution compared to the Gaussian (e.g. in terms of the Kolmogorov–Smirnov statistic37).
Let us note that Laplace distribution has been used in the literature for ARMA models (either as a marginal distribution38, or as
the distribution of the innovation39).
We then use the model obtained for the hourly data to estimate a stochastic model for the 15min continuous market. The

constant � is given by:
� = �15min = (�1ℎ)1∕4 = 0.9912.
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FIGURE A2 The cumulative empirical distribution and the estimated cumulative Laplace distribution. For comparison, the
maximum likelihood estimate of the Normal distribution is also plotted.

The probability density function fw of wk is such that the sum of four independent random variables wk + …wk+3 (each wi
following fw) follows fL,b. To find the distribution fw we proceed as follows. First note that, for a random variableX following
fL,b, there are i.i.d. random variablesX+ ≥ 0 andX− ≥ 0 such thatX = X+−X−, andX+, X− follow the exponential distribution
with density fE(z) =

1
b
exp(−z∕b), for z ≥ 0 and fE(z) = 0, for z < 0. The exponential distribution is infinitely divisible40.

Thus, for the random variablesX+, X−, there are i.i.d. random variables Y 1+ ,… , Y 4+ and Y 1− ,… , Y 4− such thatX+ = Y 1+ +⋯+Y 4+
and X− = Y 1− +⋯ + Y 4− , and Y

1
+ ,… , Y 4+ , Y

1
− ,… , Y 4− follow the Gamma distribution:

fΓ,b(z) =

{ 1
Γ(1∕4)b1∕4

z−3∕4e−z∕b if z ≥ 0

0 if z < 0
.

Thus,X = Y 1+⋯+Y 4, where Y i = Y i+−Y
i
−. Therefore, the distribution fw ofwk is given by the convolution fw = fΓ,b ∗ fΓ,b,

i.e.:

fw(z) =

∞

∫
−∞

fΓ,b(�)fΓ,b(� − z)d�.

A.1 Discretization and Computation of the Markov chain
We then determine a model for the price Markov chain. The probability mass function for a discretized form of w is shown in
Figure A3. The price is discretized in �2 intervals. Suppose that the price belongs to the i2 interval. We compute the probability
distribution of the next price state p̃k+1 assuming that the current state p̃k is distributed uniformly in the i2 interval. Then, we
compute the distribution of the next state pk+1 = �pk + wk. The distribution of the next state along with the distribution of
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FIGURE A3 The probability density function fw.
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FIGURE A4 The uniform distribution of the current state and the distribution of the next state. Observe that the next state has
a mean closer to zero and it is more disperse due to the convolution with fw.

the current state are illustrated in Figure A4. Finally, we integrate the density of pk+1 in each interval to compute the transition
probability.
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